
LLNL-MI-692819

DOE-COE Breakouts

J. R. Neely, M. W. Epperly

May 23, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Managing	the	Memory	Hierarchy	
Breakout	Session	1	

Douglas	Doerfler	(LBL),	et	al,	
DOE	Center	of	Excellence	Performance	Portability	

MeeDng	
April	18-21,	2016	



•  What	are	the	pracDcal	limitaDons	of	using	current	programming	models	
for	managing	the	memory	hierarchy	
– Do	you	plan	to	integrate	mulD-level	memory	support	into	your	code?	
– What	are	your	memory	capacity	requirements	in	the	2020	Dmeframe?	
–  Can	you	live	with	16,	32,	64	GB	per	node?	Per	NUMA	domain?	
– How	much	effort	are	you	willing	to	do	to	support	mulD-level	memory?		

•  Languages,	direcDves,	aXributes,	other?	
– Are	you	willing	to	use	a	“non-standard”	memory	management	programing	
model?	

– Do	you	need	memory	management	interoperability	of	C,	C++	and	Fortran	in	a	
common	code?	

– Would	you	like	to	see	a	type	aXribute	for	variables	to	declare	fast	memory	
storage?	

•  What	is	the	proper	balance	between	user	control	and	runDme	control	
for	memory	placement	and	management?	
– Did	Ian’s	presentaDon	cover	all	of	the	possibiliDes	here?				

Breakout	Charge	QuesDons	



Se`ng	the	Stage	

•  AssumpDons,	boundary	condiDons	for	the	discussion	
– On	package	memory	(MCDRAM,	HBM)	
– Off	package,	bulk	capacity,	memory	(DDR)	
–  Byte	addressable	non-volaDle	memory	(future	NV	technologies)	

•  Quick	survey:	Are	you	acDvely	integraDng	mulD-level	memory	(MLM)	
into	your	code?	
– About	¼		of	applicaDon	developers	said	yes	
– About	¼	said	will	be	in	the	near	future	
– About	½	were	not	developers	

•  Are	we	really	sure	we	need	MLM	concepts	in	next-generaDon	
machines?	
– No	clear	indicaDon	we	can	avoid	MLM	in	future	machines	
–  SkepDcal	that	on-package	memory	only	can	saDsfy	adequate	Byte/FLOP	balance	
raDos		



PracDcal	LimitaDons	of	using	Current	
Programming	Models	

•  What’s	wrong	with	memkind?	
– Assumes	that	were	data	resides	is	staDc,	but	real	codes	go	through	mulDple	
phases	so	you	want	to	dynamically	change	data	aXributes	

– Memkind	soluDon	is	completely	developer	managed	
– Not	sure	why	one	would	want	a	library-based	soluDon	
–  But	sDll	want	a	way	for	for	developers	to	to	this	at	a	low	level	

•  What	developers	really	want	is	to	able	to	describe	the	aXributes	of	data	
and	have	introspecDon	of	the	node	to	help	manage	data	placement	
–  Some	combinaDon	of	the	compiler	and	a	“runDme”	to	manage	the	data	

•  Also	need	a	higher	level,	higher	producDvity	soluDon	
–  CHAI	style?	
– UVM?	
– OpenMP?	



•  There	is	a	desire	and	a	need	for	variable	type	aXribute	extensions	
to	specify	“memory	characterisDcs”	
– AXributes	(vs	declaraDons)	allow	type	characterisDcs	to	propagate	
through	the	system	

– Some	disagreement	that	a	declaraDve	statement	is	sufficient,	but	there	
was	some	argument	that	the	extra	semanDcs	would	help	in	using	a	data	
structure	with	this	informaDon	

•  This	is	a	language	issue	and	is	just	as	applicable	to	Fortran	as	C/C++	
– However,	changes	in	type	system	in	languages	will	take	Dme	to	get	
through	the	language	commiXee	

•  Some	discussion	that	the	aXribute	should	not	be	“fast”,	but	instead	
“doesn’t	need	to	fast”.	
– May	also	want	to	capture	other	aXributes	such	as	latency	

•  AcDon:	Cray	has	agreed	to	explore	the	aXribute	feature	
– Group	can	send	suggesDons	to	Luis	De	Rose	(ldr@cray.com)		



•  Would	appreciate	not	just	a	programming	model	but	also	a	tool	to	
tell	us	what	data	structures	would	benefit	most	from	fast	memory	
– This	is	my	hotspot	for	memory	accesses	
–  Is	this	a	latency	bound	access,	or	BW	bound	
– This	sDll	may	have	the	limitaDon	that	the	results	will	change	with	input	
deck	and	phase	changes	in	the	code	

•  AcDon:	RecommendaDon	the	the	CoE	have	tutorials	for	tools	
available	today	
– Cray	does	have	some	capability	in	this	area	based	on	L2	misses,	release	
someDme	this	year	

– Nvidia’s	nvprof	can	already	see	memory	migraDons	(UVM)	



Languages,	direcDves,	aXributes,	other?	

•  How	do	get	C/C++	and	Fortran	to	use	the	same	mechanisms	for	
data	aXributes	

•  Much	of	the	previous	discussion	covered	this	topic	area	
•  This	propagates	down	to	the	libraries	too	
•  We	need	cross	standard	standards!	



Proper	balance	between	User	control	and	
RunDme	control	for	memory	management 		

•  Statement:	“Doing	memory	management	by	hand	is	hard,	we	did	
that	on	RoadRunner	for	the	SPEs	…”	

•  Statement:	“Would	like	to	see	a	hierarchy	of	approches	from	use	it	
as	a	cache	right	through	to	low-level	programmer	driven	

•  Again,	much	of	this	topic	was	discussed	in	prior	topics	
•  ConDnued	to	make	the	case	runDme	control	
•  Impacts	MPI,	O/s,	libraries,	I/O	buffers,	etc	
•  Analogy	with	binding	processes	and	threads	to	cores	is	similar	
– Except	we	really	don’t	want	to	bind	due	to	dynamic	nature	of	an	
applicaDon	

•  A	brief	discussion	regarding	the	ability	of	the	O/S	to	be	part	of	the	
memory	management	
– Certainly	could,	but	should	it	be?	->	NO	




